Effect of B-field Direction and Core Torque Input on SOL Flows

of Carbon lons and Deuterons in USN Plasmas on DIII-D
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Goal and motivation: test effect on SOL flow

of varying three externally controllable parameters

e B; direction
— BXVB drift into x-point in 2006; out of x-point in 2008

e Torgue input at fixed power
— Co (beams), Counter (beams), none (ECH)
— Switch from Co to Cnt on successive shots; reverse midway through shot

= Vp in SOL, between outer midplane and divertor target
— Inner leg pumped, versus unpumped

< Put model of SOL dominance of core rotation to experimental test

e Caveat: Are SOLs in DIII-D and C-Mod in similar regime?

— plasma collisionality
— influence of bursty transport




Tangential spectroscopy, TV imaging and scanning Mach probe permit

iIndependent measurements of SOL flow in crown of USN plasma

= Tangential views of high-resolution spectrometer
rely on in-vessel telescopes mounted under
lower "divertor" shelf

- Vertical chords through plasma crown
provide wavelength fiducial for
measuring Doppler shift

- Magnetic splitting of spectral lines permits
localization of emssion along chordal path

/

< TV imaging of puffed methane show poloidal
displacement in burnthrough charge states
of carbon

< Mach probes in floor and midplane provide scans
of Mach no. and plasma parameters
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Compare SOL flow Iin low-density, L-mode plasmas with

lon BxVB drift into, and out of X-point

e <nNg>~25x1019m-3 => n/ngw ~ 25% ; fraqg ~ 65%
- By=2Tforward & reverse; | = 1.1 MA

e probe plunge 2x/shot; spectroscopy throughout
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Torque Input Varied at Fixed Power with BXVB |

Co (beam), Counter (beam), None (ECH)
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e Beam modulated for
CXRS measurement 2
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V,, profile of C6* ions, measured with CXRS, shows

response of plasma core to external torque input

V¢ profile at t=2600 ms
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= V, profiles shown for three shots with
different torque inputs at fixed power
— Case with ECH has an intrinsic rotation

In Co direction

- V, tends toward zero on chords

near LCFS (2.28m)
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Carbon flow along Byt shows no change with beam

direction; speed increases with proximity to LCFS

= C Ill velocities are higher than

o Clldesnm VBy Cll (not plotted here)

= Approximate locations (below)
deduced from magnetic splitting
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SOL Profiles of D+ Mach Number and C++ Velocity

= D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma
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SOL Profiles of D+ Mach Number and C++ Velocity

= D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma
= D+ shows strong dependence on BxVB direction, but C++ unchanged

BxVB torque
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SOL Profiles of D+ Mach Number and C++ Velocity

= D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma
= D+ shows strong dependence on BxVB direction, but C++ unchanged

= |n far SOL, neither D+ nor C++ respond to reversal of beam torque

BxVB torque
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Poloidal shift in burnthrough clouds of methane-sourced

carbon is 3x greater with VB | than with VB 1

e Centroid of C Il 515nm emission profile displaced CW relative to C | 910
— Poloidal shift can arise from
flow ]|B and poloidal drifts
— Excess shiftin VB | case
in direction of ExB
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Scrape-off layer modeling with the edge-fluid code

UEDGE, including cross-field drifts BxVB | case only

48x28 cells: 0.9 W< 1.0
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e UEDGE fluid code with 'fluid’' D neutrals

e Parallel transport modeled using
Bragiinski equations and kinetic
‘corrections’ (flux limits)

* Cross-field particle drifts due to ExB and
BxVB

e UEDGE base case:

— Radial transport diffusive, adjusted to
match core Thomson ng and Tg, and
outer midplane T;:
= Radially varying D |,

poloidally constant Xg, ¥;

— lons fully recycle at plate and walls

— Neutral pumping at plate = 2%, and
wall = 5%




Predicted poloidal deuteron flow is mainly driven by the

pressure imbalance between the X-point and the crown

Deuterium particle flux [A/m2]
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= |lon BxVB drift produces core inflow at the crown, outflow at the

X-point region

= SOL poloidal flow becomes stagnant near crown just outside LCFS

= ExB flow contribution insignificant in far SOL

= APSOG6: as inner divertor detaches, plasma pressure below inner
midplane increase = entire SOL becomes staghant at the crown
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Summary

= Externally controllable parameters varied and SOL flow measured
—ion VB drift direction, torque input, Vp in SOL

e SOL flow of D* shows strong dependence on BxVB direction, C+**+ does noil

< With VB | ,changing core rotation has no discernible effect on SOL flow
— Vp: halving divertor neutral pressure had no effect on SOL flow

< UEDGE modeling with drifts available for one case only: VB 1}
— Predicted SOL flow direction opposite to that observered
— large ExB drift predicted in near SOL (C V ion) only

= All experiments performed in low-ne, L-mode plasmas
— Do same physics mechanisms dominate in in DIlI-D and C-Mod,
with differing collisionalities of SOL layer and levels of bursty transport ?






