Effect of B-field Direction and Core Torque Input on SOL Flows of Carbon Ions and Deuterons in USN Plasmas on DIII-D

by N.H. Brooks

R.C. Isler,¹ J.A. Boedo,² D.L. Rudakov,² R.A. Moyer,² M. Groth,³ W.P. West, A.W. Leonard, K.H. Burrell, and W.M. Solomon⁴

¹Oak Ridge National Laboratory
 ²University of California, San Diego
 ³Lawrence Livermore National Laboratory
 ⁴Princeton Plasma Physics Laboratory

presented at the 21st Transport Task Force Workshop Boulder, Colorado

March 25-28, 2008

Goal and motivation: test effect on SOL flow of varying three externally controllable parameters

- B_t direction
 - $Bx\nabla B$ drift into x-point in 2006; out of x-point in 2008
- Torque input at fixed power
 - Co (beams), Counter (beams), none (ECH)
 - Switch from Co to Cnt on successive shots; reverse midway through shot
- Vp in SOL, between outer midplane and divertor target
 Inner leg pumped, versus unpumped

- Put model of SOL dominance of core rotation to experimental test
- Caveat: Are SOLs in DIII-D and C-Mod in similar regime?
 - plasma collisionality
 - influence of bursty transport

Tangential spectroscopy, TV imaging and scanning Mach probe permit independent measurements of SOL flow in crown of USN plasma

- Tangential views of high-resolution spectrometer rely on in-vessel telescopes mounted under lower "divertor" shelf
 - Vertical chords through plasma crown provide wavelength fiducial for measuring Doppler shift
 - Magnetic splitting of spectral lines permits localization of emssion along chordal path
- TV imaging of puffed methane show poloidal displacement in burnthrough charge states of carbon
- Mach probes in floor and midplane provide scans of Mach no. and plasma parameters

Compare SOL flow in low-density, L-mode plasmas with ion $Bx\nabla B$ drift into, and out of X-point

- $< n_e > ~ 2.5 \ x 10^{19} \ m^{-3} = > n/n_{GW} ~ 25\%$; f_{rad} ~ 65%
 - B_t = 2 T forward & reverse; I_p = 1.1 MA
- probe plunge 2x/shot; spectroscopy throughout

Torque Input Varied at Fixed Power with $Bx\nabla B \downarrow$ Co (beam), Counter (beam), None (ECH)

V_{φ} profile of C^{6+} ions, measured with CXRS, shows response of plasma core to external torque input

- V_{ϕ} profiles shown for three shots with different torque inputs at fixed power
 - Case with ECH has an intrinsic rotation in Co direction
- V_{ϕ} tends toward zero on chords near LCFS (2.28m)

Rotation reverses when counter beam substituted for Co

Carbon flow along B_{tot} shows no change with beam direction; speed increases with proximity to LCFS

- C III velocities are higher than CII (not plotted here)
- Approximate locations (below) deduced from magnetic splitting

SOL Profiles of D+ Mach Number and C++ Velocity

• D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma

SOL Profiles of D+ Mach Number and C++ Velocity

- D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma
- D+ shows strong dependence on $B \times \nabla B$ direction, but C++ unchanged

SOL Profiles of D+ Mach Number and C++ Velocity

- D+ and C++ flows agree, consistent with entrainment of C ions in streaming plasma
- D+ shows strong dependence on $B \times \nabla B$ direction, but C++ unchanged
- In far SOL, neither D+ nor C++ respond to reversal of beam torque

Poloidal shift in burnthrough clouds of methane-sourced carbon is 3x greater with $\nabla B \downarrow$ than with $\nabla B \uparrow$

- Centroid of C II 515nm emission profile displaced CW relative to C I 910
 - Poloidal shift can arise from flow || B and poloidal drifts
 - Excess shift in ∇B↓ case
 in direction of E_rxB

(However, in far SOL, UEDGE fluid modeling predicts only a small E_rxB drift)

Scrape-off layer modeling with the edge-fluid codeUEDGE, including cross-field drifts $B X \nabla B \downarrow$ case only

- UEDGE fluid code with 'fluid' D neutrals
- Parallel transport modeled using Bragiinski equations and kinetic 'corrections' (flux limits)
- Cross-field particle drifts due to ExB and $Bx\nabla B$
- UEDGE base case:
 - Radial transport diffusive, adjusted to match core Thomson n_e and T_e , and outer midplane T_i :
 - ⇒ Radially varying D_⊥, poloidally constant χ_{e} , χ_{i}
 - lons fully recycle at plate and walls
 - Neutral pumping at plate = 2%, and wall = 5%

Predicted poloidal deuteron flow is mainly driven by the pressure imbalance between the X-point and the crown

- Ion Bx∇B drift produces core inflow at the crown, outflow at the X-point region
 - ⇒ SOL poloidal flow becomes stagnant near crown just outside LCFS
- E_rxB flow contribution insignificant in far SOL
- APS06: as inner divertor detaches, plasma pressure below inner midplane increase ⇒ entire SOL becomes stagnant at the crown

Summary

- Externally controllable parameters varied and SOL flow measured
 ion ∇B drift direction, torque input, ∇p in SOL
- SOL flow of D+ shows strong dependence on Bx∇B direction, C++ does not
- With ∇B ↓, changing core rotation has no discernible effect on SOL flow
 ∇p: halving divertor neutral pressure had no effect on SOL flow
- UEDGE modeling with drifts available for one case only: $\nabla B \uparrow$
 - Predicted SOL flow direction opposite to that observered
 - large E_rxB drift predicted in near SOL (C V ion) only
- All experiments performed in low-n_e, L-mode plasmas

 Do same physics mechanisms dominate in in DIII-D and C-Mod, with differing collisionalities of SOL layer and levels of bursty transport ?

